Echocardiographic screening for cardiac amyloidosis using artificial intelligence: A multi-site study for algorithm training and external validation

Basic & Translational Late-Breaking Science

Patricia A. Pellikka, MD, FACC, FAHA, FASE, FESC September 1, 2024

ESC Congress 2024
London & Online

Our Team

Jeremy A. Slivnick^{1*}, Will Hawkes^{2*}, Jorge Oliveira², Gary Woodward², Ashley Akerman², Izhan Hamza³, Viral K. Desai³, Martha Grogan³, Christopher G. Scott³, Halley N. Davison³, Juan Cotella¹, Matthew Maurer⁴, Stephen Helmke⁴, Marielle Scherrer-Crosbie⁵, Marwa Soltani⁵, Akash Goyal⁶, Karolina M. Zareba⁶, Richard Cheng⁷, James N. Kirkpatrick⁷, Tetsuji Kitano⁸, Masaaki Takeuchi⁸, Viviane Tiemi Hotta⁹, Marcelo Luiz Campos Vieira⁹, Pablo Elissamburu¹⁰, Ricardo E. Ronderos¹⁰, Aldo Prado¹¹, Efstratios Koutroumpakis¹², Anita Deswal¹², Amit Pursnani¹³, Nitasha Sarswat¹, Amit M. Patel, MD¹⁴, Karima Addetia¹, Frederick L. Ruberg¹⁵, Michael Randazzo¹, Federico M. Asch¹⁶, Jamie O'Driscoll¹⁷, Nora Al-Roub¹⁸, Jordan B. Strom¹⁸, Sarah Cuddy¹⁹, Ross Upton², Roberto M. Lang¹, Patricia A. Pellikka³

From

¹University of Chicago, Chicago, IL; ²Ultromics, Ltd., Oxford, UK; ³Mayo Clinic, Rochester, MN; ⁴Columbia University, New York, NY; ⁵University of Pennsylvania, Philadelphia, PA; ⁶Ohio State University, Columbus, OH; ⁷University of Washington, Seattle, WA; ⁸Hospital of University of Occupational and Environmental Health, Kitakyushu, Japan; ⁹Heart Institute (InCor), Sao Paolo, Brazil; ¹⁰ICBA, Buenos Aires, Argentina; ¹¹Centro Privado de Cardiología, Tucuman, Argentina; ¹²University of Texas MD Anderson Cancer Center, Houston, Texas; ¹³NorthShore, Evanston, IL; ¹⁴University of Virginia Medical Center, Charlottesville, VA; ¹⁵Boston University Chobanian & Avedisian School of Medicine, Boston, MA; ¹⁶MedStar Health Research Institute, Washington, DC; ¹⁷ Canterbury Christ Church University; ¹⁸ Beth Israel Deaconess Medical Centre; ¹⁹ Brigham & Women's Hospital

*co-first authors

ESC Congress 2024 London & Online

Background

Cardiac amyloid associated with high morbidity and mortality ATTR more common than previously thought Variable presentation and morphologic expression Transthyretin stabilizers most effective in early disease Accurate diagnosis Increasing complexity of our patients and their Doppler echocardiograms

Potential for missed diagnosis

- To develop an automated screening tool for cardiac amyloidosis (CA) using a single echocardiographic videoclip of the apical fourchamber view
- Distinguish CA from phenotypically similar hearts without CA
- Multi-site external validation

Training and tuning

- 3D convolutional neural network; apical 4 ch videoclips; videoclips divided into sequences of 30 frames
- Diagnosis of: AL cardiac amyloidosis, ATTR cardiac amyloidosis, hypertrophic cardiomyopathy (HCM), aortic valve stenosis, hypertension with increased LVMI, HFpEF, multiple myeloma, monoclonal gammopathy
- Patient selection stratified on age, sex, race and history of rhythm abnormalities

External validation

Global multi-ethnic cohort

597 with CA (55% ATTRwt, 28% AL, 15% ATTRv)

2122 controls

Testing in entire cohort, patients referred for PYP, and age, sex, and wall thickness matched subgroup

Clinical and echo features of training, tuning & external validation cohorts

Variable*	Training	Tuning	External Validation
	N=2,612	N=7,666	N=2,719
Age, years	70 (61, 77)	66 (54, 76)	71 (60, 80)
Body mass index, kg/m2	27.6 (24.6, 31.5)	28.2 (22.4, 32.9)	27.6 (24.2, 32.0)
Male	1916 (73.4)	3562 (46.5)	1524 (56.6)
Black	328 (13.1)	75 (1.3)	522 (21.5)
Other race	160 (6.4)	266 (4.6)	393 (16.2)
White	2007 (80.4)	5422 (94.1)	1512 (62.3)
ATTRwt CA	544 (40.3)	24 (27.0)	329 (55.1)
ATTRv CA	198 (14.7)	5 (5.6)	89 (14.9)
AL CA	607 (45.0)	60 (67.4)	166 (27.8)
Hypertension	1068 (40.9)	4378 (57.2)	1618 (70.9)
Diabetes mellitus	507 (19.4)	1984 (25.9)	694 (30.2)
LV ejection fraction	60 (49, 65)	63 (59 <i>,</i> 66)	61 (55, 66)
Interventricular septal thickness, mm	14 (12, 17)	10 (9, 12)	13 (10, 15)
LV posterior wall thickness, mm	13 (11, 15)	10 (9, 11)	11 (10, 14)
LV mass index, g/m2	127.0 (103.0, 156.0)	90.0 (76.0, 108.0)	113.0 (90.0, 141.7)

ESC Congress 2024 London & Online

* Median (IQR) or number (%)

Results Training and Tuning Performance

ESC Congress 2024

London & Online

- Performance on tuning data, n= 7666; 3354 with HFpEF, CA in 89 (1.2%)
 - AUC: 0.928
 - Sensitivity: 81.4%
 - Specificity: 92.8%
 - PPV: 13.2%
 - NPV: 99.7%

External validation in 2,719 patients Predictions in 2,356 (86.6%); uncertain in 363 (13.4%)

AUC 0.93, sens 85%, spec 93%, PPV 78%, NPV 96%

Model performance consistent: sensitivity 84% AL, 85% ATTRwt, 86% ATTRv

ESC Congress 2024 London & Online

9

PYP and age, sex, wall thickness matched subgroups

23% CA; uncertain prediction in 16.7%

AUC 0.86

50% CA; uncertain prediction in 13.5% AUC 0.92

Sensitivity: consistent performance of AI model across various strata of age, sex, race, comorbidities, LVEF, and wall thickness ESC Congress 2024 • London & Online

Comparison to Transthyretin Cardiac Amyloid Score*

- 369 ATTR-CA and control patients ≥60 years of age with clinical HFpEF and interventricular septum or PWT ≥ 12mm and complete data
- Score ≥ 6 considered positive for ATTR-CA

* TCAS: Validated risk model for ATTR-CA detection using age, sex, HTN, PWT, RWT

ESC Congress 2024 London & Online

Summary

- Al screening model for CA using apical 4 chamber videoclip
- In the 86.6% with certain predictions, model discrimination and classification were high
 - AUC 0.93 in all, 0.86 PYP, and 0.92 matched, respectively
 - NPV 96%, 93%, and 85%, respectively
- Performance consistent among CA types (sensitivity 84%, 85%, 86% for AL, ATTRwt, ATTRv, respectively
- Outperformed TCAS in pts ≥ 60 yrs with HFpEF and increased LV wall thickness (AUC 0.93 vs 0.73)
- Al screening model may improve echo detection of CA, facilitating early access to therapy