

Automated contouring of non-contrast enhanced echocardiograms result in similar estimates of left ventricular function to manually contoured contrast enhanced images in chemotherapy patients

Ashley Akerman¹, Lori Bernard², Tine Deschamps¹, Bernadette Foster², Will Hawkes¹, Eila Mirhadi², Hania Piotrowska¹, Rizwan Sarwar³, Louise Tetlow¹, Gary Woodward¹, Harald Becher²

Background

- Transthoracic echocardiography (TTE) assessment of the left ventricle (LV) is central in the early detection of cancer therapy-related cardiac dysfunction (CTRCD).
- Measurement variability ca be reduced by both contrast enhancement of TTEs, and automated contouring of the LV with artificial intelligence (AI).

Methodology

- Single centre retrospective study.
- Patients monitored for CRTCD at Mazankowski Alberta Heart Institute (Edmonton, Canada). TTE at onset of cancer therapy, and after at least 3 months of treatment.
- Manually contoured contrast enhanced images (MAN-**CON**) with IntelliSpace Cardiovascular (Phillips) compared to automated contouring on non-contrast enhanced images (AUTO-NON) using EchoGo Core (Ultromics, UK).
- Differences and agreement between methods evaluated by: (i) statistical equivalence (two one-sided t-tests), (ii) error between methods, via root-mean squared error (RMSE; Deming Regression), and (iii) average bias and associated 95% confidence interval (Bland-Altman).
- Reproducibility estimates in a similar cohort informed equivalence bounds (EDV, 20 mL; ESV, 15 mL; EF, 5%; Thavendiranathen et al., 2013, JACC), and were used to interpret mean error and bias.

Outcome	Breast Cancer	Lymphoma	Myeloma	Kruskall-Wallis Test	Table 1.	Patient
Age (years)	55 (14)	60 (24)	58 (9)	0.052	demographics	s as mean
Height (cm)	162 (7)	175 (16.5)	176 (21)	<0.001	(SD) for the	diagnosis
Weight (kg)	70.0 (21.0)	80.0 (23.5)	80.0 (29.3)	0.002	of breast	cancer,
BMI (kg/m2)	25.8 (7.5)	27.4 (5.4)	26.9 (5.7)	0.315	Lymphoma,	and
SBP (mm Hg)	122 (19)	112 (31)	126 (20)	0.063	Myeloma.	
DBP (mm Hg)	73 (11)	72 (14)	79 (11)	0.12	5	

Table 2. Tests of differences and agreement between MAN-CON and AUTO-NON for end-diastolic volume (EDV), end-systolic volume (ESV), and ejection fraction (EF).

Outcome	Diagnosis		Baseline				Follow-up			
		n	Equivalence	Error	Bias ± 95%Cl	n	Equivalence	Error	Bias ± 95%C	
EDV	All	202	< 0.001	20*	9 ± 3*	138	< 0.001	21	6±3*	
EDV	Breast	151	< 0.001	18*	8 ± 3*	112	< 0.001	19*	6±4*	
EDV	Lymphoma	27	0.028	24	9 ± 11*	18	0.031	31	6±15*	
EDV	Myeloma	24	0.083	26	$12 \pm 11^*$	8	0.011	14*	$4.3 \pm 13^{*}$	
ESV	All	202	<0.001	11*	5 ± 2*	138	<0.001	13*	5 ± 2*	
ESV	Breast	151	< 0.001	9*	$4 \pm 1^{*}$	112	< 0.001	11*	5 ± 2*	
ESV	Lymphoma	27	0.02	16	8±6*	18	0.036	23	5 ± 11*	
ESV	Myeloma	24	0.001	15*	$4 \pm 6^{*}$	8	0.005	8*	5 ± 7*	
EF	All	203	< 0.001	6.8	-0.7 ± 0.9*	138	<0.001	6.4	-2.0 ± 1.1*	
EF	Breast	152	< 0.001	6.5	-0.8 ± 1.1*	112	< 0.001	5.8	-1.9 ± 1.2*	
EF	Lymphoma	27	< 0.001	6.4	-2.5 ± 2.4*	18	0.063	8.2	-2.0 ± 3.9*	
EF	Myeloma	24	0.009	7	1.5 ± 2.8*	8	0.17	6.7	-2.6 ± 5.6*	

Notes: * denotes error or bias less than or equal to defined equivalence bounds. Equivalence indicates test statistic outcome from two one-sided t-tests pertaining to defined equivalence bounds (EDV, 20 mL; ESV, 15 mL; EF, 5%). Error relates to RMSE from Deming Regression. Bias relates to mean bias from Bland-Altman test and associated 95% confidence interval (CI).

and

via

Results

Figure 2. Difference in estimates of ejection fraction (EF) for Breast cancer patients at baseline (left) and follow up (right) between MAN-CON (green) and AUTO-NON (blue). Regions of equivalence (grey) and mean \pm 95% CI (red) highlighted in plot of differences.

- AUTO-NON differentiated functional cardiac differences between diagnoses, at baseline and during cancer therapy (Figure 1)
- Most differences between MAN-CON and AUTO-NON were small enough to be considered statistically equivalent (Table 2 and Figure 2).
- For all outcomes and diagnoses, mean bias (Bland-Altman) was also within acceptable limits (Table 2).

Conclusion

- Despite poorer image quality, Automated contouring of non-contrast enhanced TTE are comparable to manually contoured contrast enhanced images.
- Al contouring of non-contrast enhanced TTEs has the potential to improve detection and management of CTRCD.

Affiliations: 1. Ultromics Ltd, Oxford, UK; 2. Mazankowski Alberta Heart Institute, Edmonton, Canada; 3. Experimental Therapeutics, University of Oxford. Corresponding email: clinicalresearch@ultromics.com