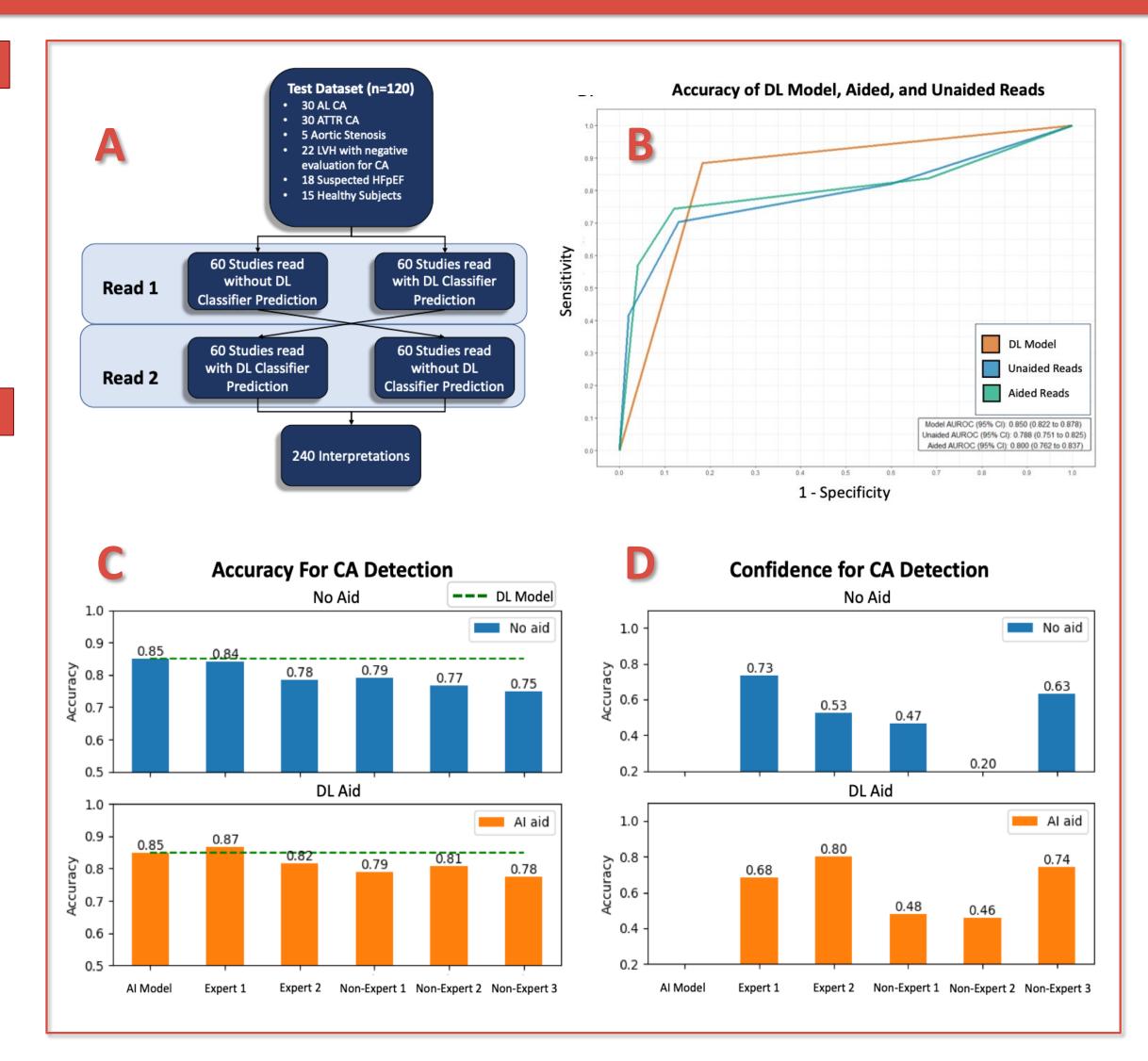
Novel Deep Learning Model for the Detection of Cardiac Amyloidosis: A Pilot Reader Study

Jeremy A. Slivnick¹, Ashley Ackerman², Jorge Oliveira², Will Hawkes², Agis Chartsias², Ross Upton², Federico M. Asch³, Juan I. Cotella¹, Linda Lee¹, Giancarlo Saldana¹, Christopher Fernandez¹, Jia Guo¹, Karima Addetia¹, Matthew Maurer⁴, Steven Helmke⁴, Vidhushei Yogeswaran⁵, Richard Cheng⁵, James N. Kirkpatrick⁵, Karolina Zareba⁶, Masaaki Takeuchi⁷, Tetsuji Kitano⁷, Marcelo Luz⁸, Viviane Hotta⁸, Aldo Prado⁹, Pablo Ellisamburu¹⁰, Marielle Scherrer-Crosbie¹¹, Marwa Soltani¹¹, Akhil Narang¹², Gary Woodward², Roberto M. Lang¹


¹University of Chicago, Chicago IL; ²Ultromics Ltd., Oxford, UK; ³MedStar Health, Washington DC; ⁴Columbia University, New York NY; ⁵University of Washington, Seattle WA; ⁶Ohio State University, Columbus, OH, ⁷University of Occupational and Environmental Health, Kitakyushu, Japan; ⁸INCOR, Saõ Paolo, Brazil; ⁹Instituto Privado Tucuman, Tucuman, Argentina; ¹⁰ICBA, Buenos Aires, Argentina; ¹¹University of Pennsylvania, Philadelphia PA; ¹²Northwestern University, Chicago IL

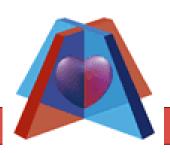
Background

- While TTE remains the frontline imaging modality for patients with cardiac amyloidosis (CA), classical TTE findings often lack sensitivity, resulting in delayed diagnosis and treatment.
- The aim of this study was to develop a deep learning (DL) model to detect CA and perform a preliminary assessment of its capabilities to assist readers.

Methods

- We trained and validated (75%/25% split) a 3D convolutional neural network to detect CA using 2757 apical 4-chamber (A4C) images derived from confirmed CA patients and controls.
- Utilizing a separate test dataset of 60 CA (30 AL, 30 ATTR) and 60 clinically relevant controls (Figure 1A), we performed a pilot study to assess the accuracy of 2 expert and 3 nonexpert readers for the detection of CA using only A4C images.
- Readers assessed all images in a fully-crossed design (Figure 1A) with and without the aid of the DL model output.
- The reads consisted of binary interpretations indicating presence or absence of CA and high/low confidence in the interpretation.
- Accuracy, sensitivity, and specificity were compared between aided and non-aided reads for statistical difference (paired t-test) and statistical equivalence (two paired one-sided ttests).

Figure 1. (A) Schematic of reader study design; (B) ROC curves for DL model, aided, and unaided readers in the test cohort. Comparison of reader (C) overall accuracy and (D) proportion of studies in which readers provided a confident interpretation for detection of CA with and without the aid of the DL model.


Results

- The DL model demonstrated an accuracy, sensitivity and specificity in the test dataset of 85% (95% CI: 81.6%, 88.2%), 88.3% (95% CI: 84.1, 92.3%), and 81.7% (95% CI 76.6, 80.3%), respectively (Figures 1B/1C).
- Aided by the DL model, readers demonstrated the potential for small improvements in performance (Figure 1C/1D), with the suggestion of larger benefits to be observed in non-experts.
- However, comparisons between aided and unaided reads were not significantly different, nor statistically equivalent, for any performance metric (all p ≥ 0.176).

Conclusions

- In this multicenter, multi-vendor study, we developed a novel DL model which demonstrated excellent performance for differentiating CA from clinically relevant controls.
- Although the study demonstrates the potential for DL model to improve reader accuracy, particularly in non-experts, our findings indicate the need for a larger reader study to better understand if DL can augment clinical decision making to promote earlier CA diagnosis and treatment.

ASE 2023

Disclosures: Several co-authors are employees of Ultromics Ltd.